Chapter 8

Useful Corollaries to Axioms

8.1 Diamond Simplification Lemmas

Lemma 8.1.1. Basic Diamond Simplification- Op(Or g, (9)) = O

Proof. Suppose Oz (<O ri1(¢)). First we enter the outer &, context, be-
ginning an In® argument. Since we have O g, (¢) in this context, we can
apply ignoring to deduce <& (¢). Thus, leaving the above special context we
have & (O2(¢)). Now the inside statement is content-restricted to £, so by
OE we can infer from its logical possibility (given the facts about £ to its

actuality). This gives us ¢, as desired.
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L 0e(OLri(9) (1]

2 ° Orr (0) [£] 1, InoI [1]

3 Or(9) 2, Ign 1 [1]
4 op(Ord) 1,2-3 InOE [1]
5 Oro 4O E[1]

O]

Lemma 8.1.2. Diamond Collapsing: If ¢o and 0 are content restricted

to L1,L9 and ¢1 is content restricted to Ly, L1, then we have

0Ly (d1 AL (927 0)) = Oro(P1 A d2A0)

Proof. LTR direction:

Assume Oz, (1A, (P2n8)). Enter the O, context. We have Oz, (pan
). Because ¢o A0 is content restricted to L1, L2, we can use ignoring to turn
this into Og, £, (¢2 A 0). Now enter this Opy 2, context. We can import ¢y
because it is content restricted to Ly, £1. Thus we can deduce ¢1 A 2 A 6.

Leaving this & context (completing our inner <& argument), we have
O roci 1 A2 A0 Hence we can deduce &gy A g2 A6 by Ign. Noting that
this latter claim is content-restricted to Ly lets us complete our larger GE
argument by pulling the fact that Oz, (¢1 A @2 A 0) outside of the outer Of,

context.

RTL direction:
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Conversely, suppose that &z, (91 A g2 A 6). Enter this Op, for Innd. By
Ol we can infer from ¢2 A0 to Oy (d2 A ). Thus we have ¢1 A O, (P2 A 0)

and completing our Iné gives O (d1 A Oy (2 A 0)) as desired.

8.2 0O Ignoring

(o0 Ign) O Ignoring. If # is content-restricted to £, Ry,... R, and Sy... Sy,

are relations not among L, Ry,... R, then -0, 5, 5,0 < Og0.
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1 mp) [1]

2 00 1]

3 OO0+ 355,70  Ignd

4 =0L8..5, 0 2,3 FOL [1]
5 Or5..8,0 [1]

6 0Og0—-0cs..5,0 5 -1

7 0rs,..5.0 [7]

8 —0r.8..5, 0 7]

9 ~Opb 3,8 FOL [7]
10  0Ogs,..5,,0 > 0Oc0 9 -1
11 Ogf < 0Og.5,..5,0 6,10 FOL

8.3 0O Collapsing Lemma

If ¢o and 0 are content restricted to L1, Lo and ¢ is content restricted to

Loy, L1, then we have

= DE0(¢1 — Oz, (g2~ 0)) < Dﬂo(qbl Ao — 0)

LTR direction:

Assume Oz, (¢1 = Oz, (¢2 = 0)).
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To prove that Ogz,(¢1 A ¢2 — 0), we consider an arbitrary scenario in
which ¢ A ¢o (and the Ly facts are held fixed).! Our initial assumption
that Oz, (¢1 — Og, (92 = 6)) is content restricted to Lo, so it must remain
true in this scenario. But what is necessary must be actual, so by OE we
can infer ¢1 - Oz, (¢2 — 0). Combining this with our knowledge that ¢; (in
the scenario now under consideration), gives Or, (¢2 — ). Again, what is

necessary is actual, so we have (¢2 - ), and hence we can derive that 6.

Now, discharging our assumption for —I gives us ¢1 A ¢o — 6. And since
we considered an arbitrary situation in which the facts about £y were held

fixed, we have Oz, (¢p1 A ¢p2 - 6) as desired, by Ol.

!That is to say, we enter a Ol context which holds fixed £o and assume for —I that

1 A P2
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1 0Oz (¢1 — Oz, (92— 0)) [1]

2 7 [£o]

3 P1 A P2 3]

4 Ozo(¢1—> 0z, (¢2—>0)) 1, import [1]
5 ¢1 — Og, (2 > 0) 4 OE [1]

6 | o (d2—6) 3,5 FOL [1,3]
7 | b0 6 OF [1,3]

8 2 3,7 FOL [1,3]
9 ¢1 NP2 >0 3,8 =1 [1]
10 Oc(é1Ady—0) 2.5 ol [1]

RTL direction:

Conversely, assume Oz, (P1 A ¢ — 6)

To prove that Oz, (¢1 — Og, (¢2 = 0)), we consider an arbitrary scenario
in which ¢; and the Ly facts are held fixed. Our initial assumption above is
content-restricted to Ly, so it must remain true in this scenario.

Then we consider a further arbitrary scenario in which ¢o (while the
application of Ly, £ in the scenario above is held fixed). Since ¢; held true
in the previous scenario, and it is content restricted to Ly, £1 it must remain

true in this second scenario. Thus we have ¢ A ¢o. Similarly, since our
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initial assumption that Oz, (¢1 A ¢2 - 0) was true in the previous scenario
and it is content-restricted to Ly, £1, it must also remain true in the scenario
currently under consideration. And since what is necessary is actual, we can
derive ¢1 A o — 0. Putting this together with ¢; A ¢o gives us that 4 is true

in the scenario under consideration.

Now in the previous paragraph, we have shown that an arbitrary scenario
in which the Ly, £1 facts from our first scenario are preserved and ¢o holds
true must also be one in which 6. Thus we know that our first scenario was
one in in which Oz, £, (¢2 = 6), by conditional proof and then ol. And since
¢2 — 0 is content-restricted to £, we can use (the O version of) ignoring

deduce that Oz, (g2 - 0).

Thus we have shown that an arbitrary scenario in which ¢, is true and
the Ly facts are held fixed must be one in which Oz, (¢2 — 6). From this it

follows by 0OI and conditional proof that Oz, (¢1 — Oz, (¢2 - 6)) as desired.
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Ozo(P1 A g2 — 0)
| [£Lo]
Ocy (1A @2 > 0)
b1
ol [Lo L]
b2
b1
1Ay

Ozy (01 A P2 = 0)

P1 AP~ 0

2~ 0
D£0,£1(¢2 - 0)

Oz, (2 — 0)

¢1—0g, (P2 > 0)

D£0(¢1 - DE1(¢2 - 9))

assump. [1]

1 import [1]

assump. [3]

assump. [6]

4 import [3]

6, 7 FOL [3,6]

3 import [1]

9 oE [1]

8,10 FOL [1,3,6]

6,11 —» I [1,3]

5-12 ol [1,3]

13 olgn [1,3]

3,14 —I [1]

2-15 ol [1]
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Putting these two arguments together in the obvious first order logical

way gives us Oz, (¢1 — Oz, (¢2 > 0)) < O, (¢1 A d2 > 0).

8.4 Box Relabeling

Lemma 8.4.1. Box Relabling If R; ... R, are relations that occur in 0
but not in L, and R} ... R), are relations with the same arities (i.e., the arity
of R; and R] are the same) that don’t occur in L or 0, then I' + Og0 <

0c0[R1/R, ... RoJR.,].

Proof. We can prove this straighforwardly from Relabling and the fact that

O abbreviates = & =

1 O Op-0[R1/R, ... Ry/R"] ReL
2 —\<>£—\9<—>—|<>£—\9[R1/R1Rn/R;l] 1, Fol

3 0Ol < 0gf[R/R]...R./R]] by def of box

8.5 Multiple Definitions Lemma

Lemma 8.5.1. Multiple Definition Lemma: Often we will want to make
a chain of explicit definitions — to using Simple Comprehension or Modal
Comprehension or Choice to specify the application of a series of relations

Ri...R, in turn. Thus we have
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° ¢
e O, where Yy specifies a way that Ry could apply in terms of L (so

1 content-restricted to L, Ry ),

e inside this & context Op r, Y2 where 1o specifies a way that Ry could

apply in terms of L, Ry (so 1o content-restricted to L, Ry, Ra)
o eic.

And we can hence conclude that Op(pA Y1 AOL R (Y2 AL Ry R (V3 A L))

In such cases we can infer the logical possibility of a single scenario

SOr(@pnthr Aaby)

Proof. The desired conclusion follows immediately by repeated application

of FOL to suitable instances of the <-collapsing lemma above. O

8.6 Simplified Choice
Simple Choice + (3z)P(z) - Op(3z(P(x) AP (2)A(Yy)[P'(y) » x = y])

Suppose for -1, that (3x)P(z).

We can use the Possible Powerset axiom schema to get the possibility that
class()and € behave like a layer of classes over the objects satisfying P and
there is an object which behaves like the @& alongside the objects satisfying P.
Enter this & p-context and use Simple Comprehension to set (Vz)(F(z) <

T = @)2 and then (entering this & pggsse-context), the possibility that R

?Here and in the rest of the proof I will use claims of the form ¢(&) to abbreviate
claims that everything which behaves like the empty set satisfies ¢ i,e. claims of the form
(3z)[class(x) AVy-y € A p(z)].
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relates @ to each object satisfying P [i.e., (Vz)(Vy)R(x,y) < x =3 A P(y)].
Enter that < p cgss,e, p-context.

Now apply Choice to get the O g of an R” which takes the single object in
its domain (@) to a single object. By Ignoring (and the fact that the formula
VaVy(R' (z,y) - R(z,y)) A [VaF(x) - IlyR'(x,y) is content restricted to
F,R) we can conclude that the above scenario is also & p asse,7,r. Enter the
latter &. By simple comprehension we can have < p ciass,e,R,F,R! P’ applies
to the single object which R’ relates @ to.

Enter this final & context. Because our biconditionals characterizing
R, F and R’ are suitably content-restricted, we can import them through
all the s for use in the current Op g p g context. Thus we can deduce
that (3z)(P(x) A P'(z) A (Vy)[P'(y) » = = y]) is true in this O peigss.e r PR
context.

Leaving this context, we can conclude that &p(3z)(P(x) A P'(z) A
(Vy)[P'(y) = z =y]) by OE. Now this claim is content restricted to P, so
we can pull it out of all the various <& contexts (each of which holds fixed
the application of P) one by one.

Thus, we can conclude + (3z) P(x) » Op(Jz(P(x)AP' (2)A(Vy)[P'(y) —

x =y]), as desired.
Simple Choice for N-tuples - (3Z)R(Z) - Or(IZ(R (Z)A(VY)[R'(§) —
We can prove all claims of this form by applying the following strategy.

First suppose for —I, that (32Z)R(Z).

Now apply Possible Powerset a bunch of times (holding fixed R and
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entering s after each time) until you have enough layers of sets to have sets
corresponding to Z (as per the usual set theoretic way of associating ordered
n-tuples with sets). By simple comprehension, P could apply to exactly those
sets coding ntuples Z such that RZ. Enter this OR set1 set2....setn context. By
the previous lemma we have &p(3z(P(z) A P'(z) A (Vy)[P'(y) — x = y]).
By ignoring we can make this &p g sety seto....set, - Enter the latter & context.
All the facts characterizing the sets; are suitably content-restricted, so they
can be imported. By simple comprehension, it is also logically possible (fixing
all the relations mentioned above) that R’ applies to exactly single n-tuple
Z coded by the unique set which P’ applies to. So, by importing all the
previously mentioned facts characterizing R, P, P’ and the set;, and then
applying a bunch of first order logic we can derive that (3Z(R(Z) A R'(Z) A
(VLR G) > 7 = §)-

Finally, we can leave the above & context and conclude that G r(32(R'(Z)A
(V§)[R'(§) = Z = §]), by In®. Since this formula is content restricted to R,
so we can bring it out of all the & contexts we have entered (all of which
hold fixed R), just as above.

This gives us Or(IZ(R'(Z) A (VG)[R'(§) = & = 4]), and thus the desired

conditional.



