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MATHEMATICAL ACCESS WORRIES AND ACCOUNTING FOR
KNOWLEDGE OF LOGICAL COHERENCE*

i. introduction

Human beings seem to have significant mathematical knowledge. But,
famously, our possession of this knowledge can seem quite mysterious.
Specifically, what could explain the match between human psychology
and objective mathematical facts? Certain features of mathematics, like
the apparent abstractness and causal inertness of mathematical objects,
can make it seem like even modest human accuracy about mathematics
could only be achieved by some massive lucky coincidence. Call this
the access problem for realism about mathematical knowledge.

In this paper, I will propose an answer to the above mathematical ac-
cess problem, in the following sense1. I’ll try to dispel the common im-
pression that human possession of significant mathematical knowledge
would require some mysterious coincidence over and above whatever is
involved in our possession of widely accepted general purpose faculties
like: first order logical deduction, observation and abduction/inference
to the best explanation.2.

Many popular contemporary philosophies of mathematics allow
mathematical access worries to be reduced to access worries about
knowledge of logical coherence. These views (views what I will call the
Structuralist Consensus3) agree that mathematicians can reliably form

* I’d like to thank my graduate advisors Warren Goldfarb, Ned Hall, Peter Koellner for
their help with early stages of this project. I’d also like to thank Daniel Nolan, Ray Briggs,
Sylvia Jonas, Claire Benn, Olla Solomyak and Casper Storm Hansen, John Halpin, Tim
Button, Jared Warren, Zeynep Soysal, Dan Waxman, Tom Donaldson and Peter Gerdes
for useful comments and discussion.

1 My proposal has some affinities to a brief suggestion in Sharon Berry: (Probably)
Not companions in guilt, in: Philosophical Studies 175.9 (2018), pp. 2285–2308, but is
significantly expanded and addresses issues like how knowledge of the logical coherence
of conceptions of mathematical structures not stateable in first order logic can be ex-
plained.

2 Admittedly, one might desire a more ambitious answer to mathematical access wor-
ries. However, I take it that merely answering intuitive mathematical access worries in the
sense above would already be a philosophically significant (c.f. companions in innocence
defenses of moral realism) and, to many philosophers, counter-intuitive result.

3 Different views in the structuralist consensus support the relevant claim about math-
ematicians’ freedom in different ways. For example, Modal Structuralists hold that math-
ematical claims really express modal claims like ‘It’s logically possible for there to be
objects satisfying certain and logically necessary that if there were objects satisfying
these axioms then...’. Plenetiudinous Platonists hold that the mathematical universe is
sufficiently large that all or nearly all coherent posits will express truths, as per Mark
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true beliefs by making, essentially, any logically coherent pure math-
ematical posits they like4. They can then gain further mathematical
knowledge by making logically valid deductions from these premises5.

Thus, it would suffice to dispel mathematical access worries if we
could dispel analogous worries about knowledge of logical coherence
— accounting for mathematicians’ ability to recognize logically coher-
ent posits (without positing some mysterious extra coincidence)6. Cru-
cially, the general purpose logical abilities I’m taking for granted in

Balaguer: Platonism and Anti-Platonism in Mathematics, 2001 and classic set theo-
retic foundationalism. And neo-Carnapian Platonists hold that we have some freedom
to choose how our language ‘carves up the world up into objects’, including freedom
to start talking in terms of new types of objects (Eli Hirsch: Quantifier Variance and
Realism: Essays in Metaontology, 2011; Amie L. Thomasson: Ontology Made Easy,
2015; Sharon Berry: Chalmers, Quantifier Variance and Mathematicians’ Freedom, in:
Alessandro Torza (ed.): Quantifiers, Quantifiers, and Quantifiers. Themes in Logic,
Metaphysics and Language. (Synthese Library vol 373), 2015, pp. 191–219; idem: A
Logical Foundation for Potentialist Set Theory, Cambridge 2022, url: https://www.
cambridge . org / core / books / logical - foundation - for - potentialist - set -
theory/FDD8BB7A0E8E82960D123DB42F1009B5 (visited on 02/18/2022)).

4 Note that pure mathematical posits are assumed to be quantifier restricted to the
structure being posited. Thus, there is no danger of individually coherent posits being
jointly incoherent or constraining the behavior of non-mathematical objects.

5 Such deductions might be made via deploying standard first order logic (knowledge
of which we are assuming). But in the case of non-first order logical axioms, they may
also involve some more powerful inference rules for recognizing logically necessary con-
sequences of these axioms, as discussed below. The story I’ll propose purports to account
for both kinds of knowledge.

6 Does knowledge of logical coherence require prior knowledge of abstracta (like set
models or sentences)? It might if we tried to reductively analyze logical possibility using
these notions. However, I will instead follow FieldHartry Field: Is Mathematical Knowl-
edge Just Logical Knowledge?, in: Philosophical Review 93.4 (1984), Publisher: Duke
University Press, pp. 509–552 (and to some extent Putnam in Hilary Putnam: Mathemat-
ics Without Foundations, in: Journal of Philosophy 64.1 (1967), pp. 5–22) in taking the
♢ of logical possibility as a primitive modal notion (that’s a logical operator).

Admittedly there’s now a fruitful tradition of identifying logical possibility with having
a set theoretic model for various mathematical purposes (and validity with not having a
counter-model). However, there are independent reasonsMario Gómez-Torrente: A Note
on Formality and Logical Consequence, en, in: Journal of Philosophical Logic 29.5 (Oct.
2000), pp. 529–539, url: https://doi.org/10.1023/A:1026510905204 (visited
on 06/05/2020); William H. Hanson: Actuality, Necessity, and Logical Truth, in: Philo-
sophical Studies 130.3 (2006), pp. 437–459; George Boolos: Nominalist Platonism, in:
Philosophical Review 94.3 (1985), pp. 327–344; John Etchemendy: The Concept of Log-
ical Consequence, 1990; Hartry H. Field: Saving Truth From Paradox, 2008 for thinking
we have prior grasp on a notion of logical possibility which isn’t defined in terms of set
models. In a nutshell, the issue is this. It’s core to our conception of this notion logical
possibility that what’s actual is logically possible. But if we think about logical possibility
in terms of set theoretic models, then the actual world is strictly larger than the domain
any set theoretic model (e.g., because it contains all the sets), so it’s prima facie unclear
why every sentence that truly describes the actual world must have a set theoretic model.

Also, one might feel (with Boolos) that, “one really should not lose the sense that it is
somewhat peculiar that if G is a logical truth, then the statement that G is a logical truth
does not count as a logical truth, but only as a set-theoretical truth"Boolos (see n. 6).

https://www.cambridge.org/core/books/logical-foundation-for-potentialist-set-theory/FDD8BB7A0E8E82960D123DB42F1009B5
https://www.cambridge.org/core/books/logical-foundation-for-potentialist-set-theory/FDD8BB7A0E8E82960D123DB42F1009B5
https://www.cambridge.org/core/books/logical-foundation-for-potentialist-set-theory/FDD8BB7A0E8E82960D123DB42F1009B5
https://doi.org/10.1023/A:1026510905204
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this paper (ability to do first order logical deduction) don’t suffice to
explain this logical coherence knowledge on their own. For, doing first
order logical deduction can deliver knowledge that I haven’t succeeded
in deriving contradiction from some axioms yet. But this is a far cry
from the knowledge we need to explain knowledge of logical coherence
(i.e., ♢ϕ knowledge where ♢ is the logical possibility operator, and ♢ϕ
ensures that no contradiction can be derived )7

In this paper, I’ll suggest a toy model for how creatures like us (in
all ways that generate intuitive access worries) could have gotten good
methods of reasoning about logical coherence sufficient to explain the
ability to recognize coherent pure mathematical posits and thence the
kind of mathematical knowledge we seem to have.

In §ii I’ll clarify how I’m thinking about access worries, and why I
take them to be most naturally and directly answered by providing a
kind of toy model. In §iii, I’ll lay out and defend a basic proposal which
attempts to explain our ability to recognize coherent conceptions puta-
tive mathematical structures stated in the language of first-order logic.8.
In §iv and §v I’ll answer some objections to this basic proposal. In §vi
I’ll note some reasons why many (but not all) philosophers of mathemat-
ics think our conception of mathematical structures cannot be stated
in the language of first order logic. Then I’ll show how the basic story
told in §iii can be generalized to account for knowledge of the logi-
cal coherence of axioms in a suitably more powerful language – given
plausible (but not uncontroversial) assumptions about the reliability of
abduction when applied to logical possibility facts.

Overall, I aim to provide a basic story about how creatures relevantly
like us could have gotten logical coherence knowledge sufficient to ac-
count for our apparent mathematical knowledge, which can be accepted
by most readers – without taking a stand on vexed questions about ex-
actly what kind of logical coherence knowledge is needed9.

7 By the completeness theoremKurt Gödel: Die Vollständigkeit der Axiome des lo-
gischen Funktionenkalküls, in: Monatshefte für Mathematik und Physik 37.1 (1930),
pp. 349–360, url: http://dx.doi.org/10.1007/BF01696781 first order logical ax-
ioms are coherent (intuitively satisfiable) if and only if they are syntactically consistent.
So if we could perform infinitely many calculations in a finite amount of time, we could
arguably recognize first order logical axioms as coherent by brute force checking syntac-
tic coherence (going through all possible proofs). But obviously, real-life mathematicians’
ability to choose coherent axioms can’t be explained by anything like this.

8 Examples of such conceptions are Q (Robinson’s arithmetic) and finite fragments of
PA.

9 Philosophers sufficiently non-skeptical and realist to face an access worry about math-
ematical knowledge can still disagree about how much logical knowledge is needed to
account for the mathematical knowledge we actually have (because they disagree on the

http://dx.doi.org/10.1007/BF01696781


4 the journal of philosophy

ii. background

Let’s begin with some background about the problem to be solved: what
does it take for a philosophy of mathematics to face an access problem,
and what would solving such an access problem require?

Following10, I take access worries about mathematical knowledge to
involve a kind of (ceteris paribus) coincidence avoidance reasoning.
A realist account of some domain (like mathematics) faces an access
worry to the extent that accepting it seems to commit us to the existence
of certain kinds of unattractive brute coincidences (regularities that cry
out for explanation but have no relevant explanation), which could be
avoided by adopting some relevant, less realist, alternative theory11.

Thus, access worries arise from a kind of ‘how possibly’ question
— and can naturally be answered by providing a kind of toy model.
They involve a ‘how possibly’ question, in the following sense. It seems
unimaginable how mathematicians could possibly have acquired the
accuracy they seem to have, without benefiting from some kind of strik-
ing coincidence that cries out for explanation. Yet adequate explanation
seems inconceivable.

Accordingly, a natural way to answer access worries would be to dis-
solve this feeling of inexplicability by providing a toy model12, i.e., a
sample explanation of how mathematical knowledge could have arisen.

richness of our conceptions of mathematical structures and/or how much we know about
these structures).

I won’t argue for a position on this debate here. Instead, I’ll try to propose a recipe
for explaining knowledge of logical coherence which is broadly useful, as follows. It can
be used by extreme truth value realists about mathematics (like myself) to answer access
worries – provided that we happen to also be somewhat optimistic about the powers
of abduction and inference to the best explanation (as sociologically tends to be the
case). However, it can also be used by philosophers like Field who are more cynical
about how far abduction and inference to the best explanation can take us, but also
(as sociologically tends to be the case) take a more modest view of the richness of our
mathematical concepts and/or the extent of our mathematical knowledge.

10 Hartry Field: Science Without Numbers: A Defense of Nominalism, 1980; Sharon
E. Berry: Coincidence Avoidance and Formulating the Access Problem, en, in:
Canadian Journal of Philosophy 50.6 (Aug. 2020), Publisher: Cambridge University
Press, pp. 687–701, url: http : / / www . cambridge . org / core / journals /
canadian - journal - of - philosophy / article / coincidence - avoidance - and -
formulating-the-access-problem/9BCFA838AF136F95A5874F70982AE3D4/share/
0ea292bf99af55791212213fdc20a4a0eebbc806 (visited on 04/03/2021).

11 So, on one hand, access worries can be seen as arising from a kind of informal
reasoning about coincidence avoidance, which is widely accepted and has proven its
fruitfulness in other areas. But, on the other hand, they only provide a ceteris paribus
reason for favoring one theory (sometimes positing extra coincidences is, on net, the
right thing to do).

12 Q. Cassam: The Possibility of Knowledge (Oxford scholarship online), 2007, url:
https://books.google.co.il/books?id=6NFNhAUi23AC; Robert Nozick: Philosoph-
ical Explanations, 1981.

http://www.cambridge.org/core/journals/canadian-journal-of-philosophy/article/coincidence-avoidance-and-formulating-the-access-problem/9BCFA838AF136F95A5874F70982AE3D4/share/0ea292bf99af55791212213fdc20a4a0eebbc806
http://www.cambridge.org/core/journals/canadian-journal-of-philosophy/article/coincidence-avoidance-and-formulating-the-access-problem/9BCFA838AF136F95A5874F70982AE3D4/share/0ea292bf99af55791212213fdc20a4a0eebbc806
http://www.cambridge.org/core/journals/canadian-journal-of-philosophy/article/coincidence-avoidance-and-formulating-the-access-problem/9BCFA838AF136F95A5874F70982AE3D4/share/0ea292bf99af55791212213fdc20a4a0eebbc806
http://www.cambridge.org/core/journals/canadian-journal-of-philosophy/article/coincidence-avoidance-and-formulating-the-access-problem/9BCFA838AF136F95A5874F70982AE3D4/share/0ea292bf99af55791212213fdc20a4a0eebbc806
https://books.google.co.il/books?id=6NFNhAUi23AC


access worries and knowledge of logical coherence 5

This sample explanation doesn’t have to fit all known facts about how
human mathematical knowledge actually arose. However, it does have
to keep the key features of our actual situation that make adequate
explanation seem inconceivable (e.g., our lack of causal contact with
mathematical objects or logically possible worlds). It also cannot be
buck-passing, in the sense that it explains one mysterious extra correla-
tion the mathematical realist is committed to by appealing to another.
For example, one can’t solve access worries merely by explaining math-
ematicians’ acceptance of largely true theorems merely by appeal to
their acceptance of largely true axioms.

In the rest of this paper, I will try to provide such a story (center-
ing on explaining our knowledge of logical coherence facts needed to
recognize acceptable mathematical posits)13.

iii. the basic proposal

To introduce the basic idea behind this proposal (and set up the toy
model I’ll develop), imagine creatures who speak a language much like
our own14 and already have the widely accepted non-mathematical fac-
ulties we are taking for granted: first order logical deduction, broadly
sensory perception of non-mathematical objects and abduction/IBE15.

I take it that it wouldn’t be massively surprising (in the sense rel-
evant to access worries) if such creatures acquired a kind of minimal
notion of logical possibility. Specifically, I take it that we can (without

13 In answering access worries, I aim to remove the apparent commitment to positing a
spooky coincidence that creates internal tension for mathematical realists -and (perhaps)
defeats our pro tanto justification for ordinary a priori reasoning about logical possibility
and mathematics. I’m not trying to justify mathematical beliefs which would otherwise
appear to have no justification (or defend some kind of empiricism). At most, I aim to
provide a defeator defeator.

Because my aim is thus to remove an internal tension, appeal to parts of the mathe-
matical realist web of beliefs that would otherwise be question-begging is allowed. We can
invoke various controversial elements of our background philosophy of mathematics to
explain human mathematical accuracy, provided this explanation is coincidence reduc-
ing (i.e. that we don’t explain away one extra coincidence mathematical truth-value realism
forces seemingly forces us to posit by appeal to another, which is left unexplained).

14 For simplicity’s sake, I’ll suppose that they speak a fully formal language like first-
order English so we can meaningfully talk about things like substitution instances.

15 My work on this topic was influenced by the proposals for empirical correction to
mathematical beliefs in Philip Kitcher: The Nature of Mathematical Knowledge, 1983 and
Carrie Jenkins: Grounding Concepts: An Empirical Basis for Arithmetical Knowledge,
2008, although I reject empiricism about mathematics, preferring a Humean-projectivist
approach to basic a priori knowledge as advocated along the lines of Sharon Berry:
Default Reasonableness and the Mathoids, in: Synthese 190.17 (2013), pp. 3695–3713
and idem: External World Skepticism, Confidence and Psychologism about the Problem
of Priors, in: The Southern Journal of Philosophy 57.3 (2019), on which good methods of
reasoning about logical possibility acquired in the way I propose would count as yielding
a priori knowledge.



6 the journal of philosophy

question beggingly attempting to explain one coincidence by appeal
to another mysterious coincidence) further imagine the protagonists of
our toy model as having acquired a kind of minimal concept of logical
possibility16 which they take to satisfy the two schemas below (and the
expectation that ♢ facts should follow elegant general laws)17.

• ϕ→ ♢ϕ
• When S1 . . . Sm and S ′

1 . . . S
′
m are all distinct relations with each

S ′
i having the same arity as Si and no S ′

i occurs in ϕ, ♢ϕ ↔
♢ϕ[S1/S ′

1...Sm/S ′
m]

Informally speaking, the first schema embodies the idea that we are
talking about a notion of possibility, saying that everything actual is
logically possible. The second embodies the idea that we are talking
about possibility with respect to logical form alone, so that systemat-
ically replacing one relation with another (without collision) doesn’t
change logical possibility facts18.

Now we ask, how could creatures like this gain sufficient knowledge of
logical possibility to reconstruct the mathematical knowledge we seem
to have? Note that no amount of mere first-order logical deduction (i.e.,
no first-order logical proof from empty premises) will ever let one derive
even simple logical possibility facts we seem to know, like the fact that
it’s logically possible for there to be two distinct things ♢(∃x)(∃y)(¬x =
y).

I take it we can imagine creatures of the kind envisaged above getting
some general good methods of reasoning about logical possibility via the
following combination of mechanisms19.

16 Arguably it would be surprising if they didn’t develop such a notion. These creatures
face a practical problem. Their language lets them form many different statements whose
falsehood is guaranteed by their logical structure alone. So many plans which they can
verbally represent would, ideally, be discarded as unrealizable purely on the grounds that
they require something logically impossible. And there is practical benefit to recognizing
this and focusing resources on plans and hypotheses, which are, at least, logically possible.
Even though creatures with first-order logic will already be disposed to reject plans when
they derive a contradiction from them, there are further benefits to be gained from having
a positive theory (e.g., being able to infer that one scenario is logically possible only if
another one is, allows one to skip searching for a contradiction in the former scenario
after seeing the later scenario realized).

17 That is, I take it we can assume this at the beginning of our story, without risk of
question beggingly explaining away one apparent ‘extra’ coincidence by appeal to another
such coincidence (which is left unexplained). See Berry (see n. 10) for more details.

18 Note that some natural variants on this initial conception of logical possibility would
intuitively count as getting something else right (e.g., setting out to learn facts about
physical, chemical, metaphysical, or psychological possibility) rather than getting logical
possibility wrong.

19 Note that, when I talk about correct methods of reasoning about logical possibility,
I don’t just mean verbal/symbolic reasoning (like reasoning as per the proof system pro-
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III.1. From ϕ to ♢ϕ. First, knowledge of non-mathematical objects (got
via the faculties of sensory observation, FOL deduction and IBE we are
assuming) can give one some initial data about logical possibility via
the above principle that’s what’s actual is logically possible. For exam-
ple, suppose you know that some claim ϕ is true about how the relations
of friendship, nephew-hood and having been in military service together
apply in just this way to the royal family of Sweden. Then you can infer
that this scenario is logically possible: ♢ϕ. You can also infer the logical
possibility of a corresponding hypothesis about which of your friends
are gossiping with each other (involving relations P , Q, and R).

III.2. Abduction from regularities in what’s actual to □ϕ. Second, patterns
in these data points can suggest further facts via abduction and infer-
ence to the best explanation. These generalizations can take the form
of general laws/methods of reasoning about logical possibility which let
us derive additional ♢ϕ claims in cases where we don’t know that ϕ is
actual. For example, we might learn laws/inference methods that let us
derive claims of the form ‘if ♢ϕ then ♢ψ’.

Noticing other patterns in the behavior of non-mathematical objects
(that certain states of affairs are never observed to be actual) and ap-
plying IBE can yield other kinds of logical possibility knowledge. Some-
times the best explanation for the fact that certain things never happen
is that it would be logically impossible for them to happen. This pro-
vides a potential source of knowledge of ¬♢ϕ facts20.

posed in Berry: A Logical Foundation for Potentialist Set Theory (see n. 3)). I also mean
to include the kind of informal a priori reasoning via visualization and thought experi-
ments James Robert Brown describes in Melanie Frappier/Letitia Meynell/James Robert
Brown: Thought Experiments in Science, Philosophy, and the Arts, en, Google-Books-ID:
IB7aRxKkyHAC, Sept. 2012 (e.g., convincing yourself that a chessboard minus two cor-
ner squares can’t be covered with dominoes, by noting that each domino would cover
one black and one white square, but now the board has two more black squares than
white squares). I take our use of accurate quasi-visual methods of reasoning about logical
possibility to raise an access worry just as much as our use of accurate deductive methods
(and think the response I’m proposing can answer access worries about both kinds of
methods).

20 Admittedly, we who already have good methods of logico-mathematical reasoning
would be unlikely to form the belief about sundaes below abductively. Instead, we might
derive the first-order logical tautology corresponding to this claim, and then appeal to
our belief that all theorems of classical logic hold with logical necessity. Or we might
employ some systematic method of listing labels which we are convinced exhausts all
logical possibilities.

However, as noted above, I take both deductive and informal pictorial reasoning about
logical possibility to raise a prima face access worry. And, I’m suggesting (as part of and
attempted solution to this shared access worry) that abduction-like processes could lead
someone who didn’t yet possess these powerful good armchair reasoning methods to
form some initial true beliefs about logical necessity (and thence start down the path
to acquiring such accurate and powerful general methods of reasoning about logical
possibility that I propose).
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Suppose, for example, that someone thought it was logically possible
for there to be 9 sundaes which differed from one another in which of
three properties they had, e.g., for 9 people to choose different combina-
tions of sundae toppings from a sundae bar containing three toppings.
This person would have to explain the striking law-like regularity that,
regardless of the type of items and properties in question, we never
wind up observing more than 8 such items. They might postulate new
physical regularities to explain why apparently random processes of flip-
ping three coins never generated the forbidden 9th possible outcome.
However, this explanation (or some analogous one) would have to ap-
ply at every physical scale we can observe, from relationships between
the tiniest particles to relationships between planets and stars (as well
as to less concrete objects like poems and countries). A much more
elegant explanation is that the unrealized outcome isn’t logically co-
herent. Recognizing that the forbidden 9th outcome is forbidden in all
possible domains is much more economical and a priori attractive than
hypothesizing separate laws prohibiting it in each specific situation.

In this way, we can think of facts about what’s actual as simultane-
ously a useful source of data about what’s logically possible, physically
possible, chemically possible, etc.

Now an objector might wonder how it is possible for a single collec-
tion of data to do all these jobs. When we notice a seeming regularity, we
face an in-principle choice about whether to explain it in terms of log-
ical necessity vs. physical law, metaphysical necessity or mere ceteris
paribus regularity. How could we ever be justified in saying that this
regularity holds as a matter of (say) logical rather than merely physical
necessity?

I’d reply that this is not a problem because patterns in our experience
can still rationally motivate (in the sense relevant to IBE) attributing
a noted regularity to logical necessity rather than physical law. For, as
noted in the case above, if the right explanation for some regularity is
that it holds as a matter of logical necessity, we should expect to see that
all substitution instances of it (i.e., all sentences with the same logical
structure) are true, whereas we’d expect the opposite if this regularity
holds as a matter of merely metaphysical necessity or physical necessity.

III.3. Reflection and Generalization. Third, one could make further
gains in the power and accuracy of our methods of reasoning about log-
ical possibility by the familiar processes of deriving new consequences
from whatever laws of logical possibility we currently accept, reflecting
on our beliefs and recognizing when they conflict or cohere with one
another.

So, to summarize, the core idea is this. We get some initial knowl-
edge of logical possibility facts via the principle that what is actual is
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logically possible (just as we get some initial data about what states
of affairs are chemically possible by observing what actually happens).
Abduction and inference to the best explanation can then help us cor-
rect hypotheses about allowable inferences regarding logical possibility.
Facts about logical possibility provide a uniform subject matter which
we get initial data about from our non-mathematical faculties (via the
actual to possible inference) and to which abduction and inference to
the best explanation can be fruitfully applied, with the result that our
knowledge of logical possibility is no more mysterious than our knowl-
edge of physical or chemical possibility.

However, various worries can be raised about whether abduction and
inference to the best explanation can give us enough logical knowledge
to account for our seeming mathematical knowledge via some view in
the structuralist consensus (i.e., whether it can explain our ability to
recognize ♢ϕ facts, where ϕ is our conception of some mathematical
structure like the natural number). I will discuss and answer a number
of such worries below, proposing two important generalizations of the
above story as needed to do this.

Additionally, there’s a major technical problem about how to account
for knowledge of the logical coherence of conceptions of pure mathe-
matical structures that can’t be stated (by finite or recursively enumer-
able axioms) in the language of first order logic. I will address this in
§vi.

iv. a priority and innateness

One family of worries about the basic proposal in §iii concerns whether
it can adequately allow for the possibility of (in some sense) innate or
a priori mathematical knowledge.

First, one might argue that the answer to mathematical access worries
proposed above can’t account for our having any very innate/hardwired
propensity to good mathematical (or logical possibility) reasoning. The
basic story about logical and mathematical accuracy sketched above
(involving conscious reasoning like applying abduction or inference to
the best explanation) prima facie can’t account for innate inclination to
form true beliefs about logical possibility or mathematics21. Thus, one
might object that my proposal can only solve the general mathematical
access problem on the (unjustified) assumption that we won’t turn out

21 See Spelke’s experiments with infants in E.S. Spelke/K.D. Kinzler: Innateness, learn-
ing and rationality, in: Child Development Perspectives 3 (2009), pp. 96–98. for an ex-
ample of the kind of data which might suggest that certain good methods of reasoning
about (something like) logical possibility or mathematics are relatively innate.



10 the journal of philosophy

to have much of an innate push towards good logical or mathematical
reasoning.22

In response to this concern, I’d like to suggest that a version of the
basic story (about abduction and IBE leading us from initial datapoints
to correct laws) can be realized at an evolutionary level, if our dispo-
sitions to accept good mathematical reasoning turned out to be suffi-
ciently innate (e.g., if we were innately disposed to do something like
good mathematical reasoning in a language of thought). Though evolu-
tion may not care about elegance and theoretical economy in quite the
sense that we do, mental resources are expensive and those methods
of reasoning that could be encoded in the simplest manner and handle
the most general situations would be favored23

Second, one might worry that accepting the kind of story about
knowledge of logical possibility (and thence mathematics) developed
above commits one to a controversial empiricism about mathematical
knowledge. As our mathematical knowledge is generally assumed to be
a priori, this presents a prima facie problem (though some, like Quine
and Mill24, are happy to bite the bullet).

However, I don’t think any such commitment to empiricism is in-
curred. For note that experience playing an important causal role in
explaining how we got accurate methods of reasoning about logical pos-
sibility and thence mathematical reasoning (whether via conscious rea-
soning or evolutionary selection) doesn’t prevent the knowledge gained
by using these faculties from qualifying as a priori. Sometimes (in a kind
of ‘epistemic Stockholm syndrome’) conscious experience and inference
to the best explanation leads us to accept some method of reasoning,

22 A third way of realizing the explanatory strategy proposed above involves something
like meme selection on mathematical textbooks and/or practices. We can imagine the
relevant process of using IBE to generate and correct beliefs occurring either within an
individual’s lifetime or over 100s years of intellectual history/via meme selection on social
norms for reasoning about logical possibility. Perhaps each creature learns how to reason
about logical possibility and mathematics from the society around them, and individuals
only very rarely suggest revisions to these methods – but theories which elegantly predict
and explain regularities in what’s actual are much more likely to spread once suggested.
Considering the development of probability theory textbooks (with older theories leading
to countries dutch booking themselves and thus consistently losing money)Ian Hacking:
The Emergence of Probability, vol. 26, 1995, p. 186 may provide a real life model for
such a process.

23 One might question whether something analogous to abduction and inference to the
best explanation can apply at the level of evolutionary selection. But I suspect that most
readers are already committed to a fair amount of optimism on this front; we don’t tend
to think there is any access problem about the fact that human infants have seemingly
correct inclinations to fear heights or avoid poisonous foods.

24 John S. Mill: A System of Logic Ratiocinative and Inductive, 2002; W. V. Quine: On
What There Is, in: idem (ed.): From a Logical Point of View, 1961, pp. 1–19.
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and then we decide that we should have reasoned that way all along (so
facts discovered using these methods are a priori knowable).

The online supplement to a New York Times article25 on the Monty
Hall problem provides a cute demonstration of this psychological fact.
It used a computer simulation using a random number generator to
change readers’ opinions about how one ought to analyze probabili-
ties in that case (and hence whether it would be beneficial to change
doors). So contingent experiences with a computer simulation seem-
ingly changed readers’ minds about which methods of reasoning about
probability are appropriate for use a priori (whether or not you’ve done
experiments with a simulated Monty Haul problem).

v. does ibe go far enough?

Now let me turn to a series of (progressively more radical) worries about
how far abduction and inference to the best explanation can take us.

V.1. Scientific Induction Unreliable in Mathematics? Most radically,
someone might reject the story above because they hold that abduction
and inference to the best explanation are completely unreliable with
regard to mathematics (and hence plausibly also logical possibility)26.
If this were correct, it would certainly raise a problem for the answer to
access worries about logical possibility sketched above. Someone press-
ing this worry will doubt that the mechanisms above could even yield
laws that correctly predict what’s logically possible for finite collections
of objects27.

In response to this, I would note that there’s strong independent rea-
son to reject insinuations that generalization from cases is completely
unreliable in mathematics. Mathematicians frequently use hunches de-
veloped from past experience, judgments of general plausibility or the-
oretical attractiveness and the results of computational searches28 to
guide their research. For example, the widespread expectation that Fer-
mat’s last theorem was true before any proof was found was (partially)
motivated by consistent failure to find a counterexample. If we want
to make sense of the apparent success of this aspect of mathematical
practice, we can’t suppose that abduction and inference to the best

25 John Tierney: And Behind Door Number 1, a Fatal Flaw, in: New York Times, Apr.
2008.

26 See Gottleib Frege: The Foundations of Arithmetic: A Logico-Mathematical Enquiry
into the Concept of Number, 1980 pg. 16 for a version of this objection.

27 Here I have in mind claims of the form ♢Φ, where Φ logically entails the Fregean
translation into purely logical vocabulary of ‘there are at most n things’.

28 Of course, mathematicians don’t do this naively. If they already know that any coun-
terexample must be large, they won’t change their judgments because no small counterex-
amples were found.
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explanation are completely unreliable when applied to the mathematical
realm29.

Also note that the idea that something like the abduction/inference
to the best explanation found in the sciences can also reliably be ap-
plied to mathematics, is a controversial but modestly popular position
in the literature on the search for new axioms in set theory. Gödel fa-
mously suggested that we can reliably add new axioms by choosing
principles which unify and explain the mathematical beliefs which we
already have30. If this is true, then it seems plausible that the creatures
in our just-so story could reliably extend an initial collection of good
methods of reasoning about logical possibility in the same way31.

V.2. A Gap Between the Finite and the Infinite? Next, there’s a worry that
the story suggested above cannot explain the degree of mathematical
knowledge we take ourselves to have (specifically) because there’s a big
gap between the laws of logical possibility which apply to the finite and
the infinite.

One might allow that the above mechanisms can explain human ac-
curacy about logical possibility facts involving finite collections, but
argue as follows. All the ‘inputs’ to the abductive story above (i.e.,
knowledge of what’s actually true via sensory perception and infer-
ence to the best explanation) involve finite structures. So abduction
from mere knowledge that certain finite structures are logically coher-
ent couldn’t plausibly lead us to (correct) laws about what scenarios
involving infinitely many objects are logically possible. Many elegant

29 Note that my suggestion that abduction/IBE can be a reliable source of true beliefs
about mathematics doesn’t require that for all predicates ϕ, failure to find a counterex-
ample to ∀xϕ(x) in the first billion numbers makes the latter claim likely to be true. As
Goodman famously emphasized in the scientific caseNelson Goodman: The New Riddle
of Induction, in: Sven Bernecker/Fred I. Dretske (eds.): Knowledge: Readings in Contem-
porary Epistemology, 2000, we take abduction/IBE to be a reliable method of forming
scientific beliefs, while not thinking all properties expressible in the language of our scien-
tific theories are projectable. (See Alan Baker: Non-Deductive Methods in Mathematics,
in: Edward N. Zalta (ed.): The Stanford Encyclopedia of Philosophy, Summer 2020, 2020,
url: https://plato.stanford.edu/archives/sum2020/entries/mathematics-
nondeductive/ (visited on 07/12/2023) for a discussion of cases where mathematicians
do vs. don’t think that counterexamples are likely to be small, if they exist.)

30 In Kurt Gödel: What is Cantor’s Continuum Problem?, in: Kurt Gödel: Collected
Works Vol. Ii, 1947, pp. 176–187 Gödel writes, “There might exist axioms so abundant
in their verifiable consequences, shedding so much light upon a whole field, and yielding
such powerful methods for solving problems... that, no matter whether or not they are
intrinsically necessary, they would have to be accepted at least in the same sense as
any well-established physical theory.” See Peter Koellner: On the Question of Absolute
Undecidability, in: Kurt Gödel: Essays for His Centennial, vol. 14, 2010, pp. 153–188 for
more on this.

31 See Baker (see n. 29) for some references in support of the idea that abduction/IBE
type processes can be truth-conducive in mathematics, and play a role in mathematicians’
rational choices about how to allocate research time.

https://plato.stanford.edu/archives/sum2020/entries/mathematics-nondeductive/
https://plato.stanford.edu/archives/sum2020/entries/mathematics-nondeductive/


access worries and knowledge of logical coherence 13

generalizations that hold for finite collections fail for infinite structures,
e.g., consider Hilbert’s hotel. Thus, (unless we can allow for some in-
puts concerning infinite structures) the above proposal can’t account
for our knowledge of logical possibility of axioms describing even the
smallest mathematical structures involving infinitely many objects, like
the natural number structure.32

I propose that we answer this concern by adding an additional quasi-
Quinean twist to the basic story outlined in §iii. Recall that Quine
famously suggested that we can learn mathematical objects exist via the
fact that our best scientific theories quantify over them33. This claim is
extremely controversial.

However, it would suffice for the story about knowledge of logical
possibility above if scientific use of claims about infinity gave us knowl-
edge of logical possibility claims directly (rather than knowledge of
truths about non-mathematical objects which can be used to infer logi-
cal possibility claims). And many people, even philosophers who reject
this Quinean idea, tend to allow that either something like long use
of some axioms without deriving a contradiction or scientifically ex-
planatory use of these axioms is a (ceteris paribus) reliable guide to
the logical coherence of these axioms 34.

Thus, we can plausibly appeal to (something like) the scientific use-
fulness of theories requiring the existence of infinitely many objects as
a reliable source of input regarding the logical possibility of certain

32 Arguably faculties continuous with the sensory observation and inference to the best
explanation we are taking for granted can deliver knowledge of the truth (and hence logi-
cal possibility) of a few claims implying the existence of infinitely many non-mathematical
objects. Consider the following first order logical claim, ‘For every spatial region in the
path of Zeno’s arrow there is a shorter one’. It’s not clear whether or not infinitely divisible
regions of space turn out to be part of fundamental physics. However, one might argue
such spatial regions are part of the manifest image and can be known to literally exist
much as holes, shadows, heatwaves, marriages and contracts can be known to literally
exist.

33 Quine (see n. 24).
34 Perhaps we can add some theoretical support to this intuition (that scientific use-

fulness is more clearly a guide to logical coherence than truth) by noting that scientists
choosing theories seem much more concerned with ensuring logical coherence than with
getting pure mathematical ontology right. As works like Justin Clarke-Doane: Moral Epis-
temology: The Mathematics Analogy, in: Nous 48.2 (2014), pp. 238–255; John P. Burgess/
Gideon Rosen: A Subject with no Object, 1997 have noted, scientists generally don’t seem
to be very interested in discovering and eliminating ‘alternatives’ to a physical theory
which replace appeal to one kind of mathematical structure with another mathemati-
cal structure or avoid quantification over mathematical objects all together (being much
more likely to regard these as mere notational variants than they would theories which
e.g., posit different structures of fundamental physical particles). In contrast, I take it,
scientists are generally concerned to avoid appeals to logically incoherent mathematics
(with cases like appeal to Dirac delta function are specially marked and accompanied by
some unease and expectation that a better future theory will restore logical coherence).



14 the journal of philosophy

scenarios involving infinitely many different objects. For example, we
might say the scientific-explanatory usefulness (or long harmless use of)
of reasoning with a space of ‘possible words’ (abstract objects witness-
ing possible ways concatenating some letters from the alphabet A-Z)
that’s taken to satisfy certain closure conditions, gives us some reason
to believe in the logical coherence — if not the truth — of axioms
describing this space. And the same goes for explicitly mathematical
structures used in scientific theories, like the natural numbers and the
reals. If initial data points involving the logical coherence of few central
infinite mathematical (or abstract) structures can be secured in this
way, the worry above will be answered. Applying inference to the best
explanation/abduction concerning logical possibility (as in the basic
just-so story told above) can then account for our knowledge of the log-
ical coherence of other (less scientifically useful or frequently studied)
conceptions of infinite mathematical structures35.

Note that the above proposal suggests that long and/or scientifically
explanatory use can be a good guide to logical coherence (so that we
can add an extra source of initial data points regarding ♢ϕ facts) as
follows, not that it’s an infallible guide. I allow that it’s sometimes useful
and rational to temporarily adopt (in some sense of the word) logically
incoherent scientific theories36. But I would argue that such cases are
rare 37. Also what’s useful (and what people actually do) isn’t accepting
these theories without caveat, so we might accommodate this point by
saying that long scientific explanatory use without caveat is a good
guide to truth.

One might fear that adding the above new quasi-Quinean element
to the core proposal made above re-introduces known problems for
Quinean empiricism. However, the fact that our current story only en-
dorses an indirect relationship between scientific and mathematical be-
liefs (mediated by acceptance of general laws of logical possibility) and
doesn’t require scientific usefulness for mathematical existence lets us
continue to avoid many important problems for Quine’s account. For ex-
ample, we have no trouble accommodating recreational mathematics38

35 Note that I don’t presume (or need to presume) that concrete reality forces any
single unique such structure on us. As Penelope Maddy emphasizes in Penelope Maddy:
Defending the Axioms: On the Philosophical Foundations of Set Theory, 2011, science
and philosophy of science may under-determine what logico-mathematical structure to
ascribe to a physical system.

36 For example, consider the scientific and explanatory use of the Dirac delta function
in physics.

37 See Peter Vickers: Understanding Inconsistent Science, 2013 for extended discussion
of a number of cases studies supporting this point.

38 Lewis Edwin Hahn/Paul Arthur Schilpp: The Philosophy of W.V. Quine, 1986.
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or mathematicians’ tendency to learn about scientifically useful math-
ematical objects before any scientific usefulness is discovered39. And, of
course, while Quine’s story includes the controversial claim that math-
ematics is empirical, my answer to access worries is entirely compatible
with mathematical knowledge being a priori4041.

39 Michael Friedman: Dynamics of Reason (Center for the Study of Language and
Information - Lecture Notes), 2001.

40 I think it can be used to attractively explain how a priori knowledge is possible, if
we accept a commonplace foundationalist understanding of the a priori, which traces
all a priori knowledge back to some basic principles and inferences which we can be
warranted in making without justificatory appeal to anything else. For if you think that
any beliefs/inferences have basic a priori warrant, the steps in deploying correct general
methods of reasoning about logical possibility which we find immediately compelling
(and are perhaps even innately hardwired to find unquestionable) seem like an obvious
candidate for such beliefs/inferences.

41 In Geoffrey Hellman: Mathematics Without Numbers, 1994 Hellman proposes to
explain knowledge of logical possibility needed for his nominalistic if-thenist view by
“adapting Quinean indispensability arguments” and scientific use to be a guide to logical
coherence rather than to truth. Accordingly, some of the worries for Quine’s empiricism
mentioned above (like the problem of recreational mathematics) also apply to his view.
I hope he could accept my proposals as a kind of friendly amendment.

My proposal has a more complex relationship to Shapiro’s account of how we could
have gained knowledge of mathematical structures in Stuart Shapiro: Philosophy of Math-
ematics: Structure and Ontology, 1997. Shapiro officially appeals to three processes (1)
recognition of the small structures instantiated by physical objects like chess pieces stand-
ing in visually surveyable relationships to one another (2) introduction new kinds of ob-
jects via abstraction principles (which specify an equivalence relation on some original
kind objects), and recognition of corresponding instantiated structure (3) learning about
new structures by implicit definition. However, some features I want to highlight and
contrast with my proposal fit a bit awkwardly into this story.

First, Shapiro occasionally takes for granted our use of substantial good methods of
reasoning about logical possibility, which I can’t presume (given my aim to answer access
worries about knowledge of logical possibility). For example, at one point Shapiro’s story
involves inference from the existence/logical possibility of a natural number structure 0,
1, 2 etc., to recognition of the integer structure which ‘goes on like that’ in both directions.

Second, some parts of Shapiro’s story depend on his controversial ante rem structural-
ism (which takes structures to be special abstract objects which can exist uninstantiated).
For example, he proposes a route to recognition of the natural number structure via going
from

• accepting the (in some sense) possibility of each finite stroke sequence ‘I’, ‘II’
etc being extended to form another one

• accepting, the (current, simultaneous) existence of abstract objects, ‘struc-
tures’ witnessing all these, mostly physically uninstantiated, possibilities for
stroke sequences — and our ability to simultaneously quantify over all them
(so we get a model of Peano Arithmetic).

This kind of inference from potential to actual infinity is controversial, given its simi-
larity to the paradoxical reasoning about the ordinals in the Burali Forti paradox. For
example quantifier variantists who accept mathematicians’ freedom to start talking in
terms of objects satisfying any coherent pure mathematical axioms, would tend to reject
(even ceterus paribus) inference from mere logical possibility to existence on our current
quantifier sense. Accordingly, I stick to the alternative path to recognition of the logical
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V.3. Extent of Knowledge. Finally, one might worry that the above story
can’t account for our apparent knowledge of facts about logical co-
herence (and necessity) involving large infinite collections, such as are
plausibly needed to account for knowledge of set theory42.43 discusses
a version of this worry (posed as a response to a simpler predecessor
of the view defended here) in some detail, “A critic might advance the
following analogy: saying [knowledge of logical possibility facts involv-
ing finite and countably many objects yields general principles that can
give knowledge of logical possibility facts involving larger structures
as needed to reconstruct set theory] is like saying that inference to the
best explanation plus observations of birds in New Mexico explains our
possession of true beliefs about birds in Canada as well. Presumably,
in the ornithological case, we need to go gather more data in order to
get many true beliefs about birds in Canada. But, in the mathematical
case, we can’t gather more data. Thus, our apparent possession of sub-
stantial true beliefs about what is logically coherent for larger infinite
collections remains mysterious.”

possibility of infinite structures described in the main text (which Shapiro seemingly also
accepts a legitimate possibility).

Third, I find Shapiro’s story a little vague about how we’re supposed to be able to
recognize the coherence/structure corresponding to the second order conception of the
natural numbers (expressible via PA2 or PA♢) which Shapiro agrees we actually have and
use in mathematics. He writes as follows,

“Our subject, no longer a child, continues to reflect on the sequence of larger and
larger finite structures and grasps the notion of a finite sequence per se. The finite
sequences are ordered as follows: I, II, III, IIII, . . . Our subject learns that the
sequence of sequences goes on indefinitely. She sees that the system of finite ordinal
structures has a pattern. For each sequence, there is a unique next-longest sequence,
and so there is no longest sequence. The system of finite sequences is potentially
infinite. Eventually, the subject can coherently discuss the structure of these finite
patterns, perhaps formulating a version of the Peano axioms for this structure. We
have now reached the structure of the natural numbers."

One might wonder: isn’t this just a story about recognizing (the logical coherence of) a
structure satisfying the first order Peano axioms minus induction? (For example, in virtue
of what does the protagonist of his story count as grasping a notion of finite ordinal rather
than just ordinal when they reflect on and generalize about I, II, III, IIII, . . .?) I have tried
to be clearer about recognizing and addressing the special challenges of accounting for
knowledge of the logical coherence of second order conceptions of mathematical objects.

42 Perhaps we have a kind of ‘intuitive-imaginative grip’ on the intended natural number
structure and even on that of the hierarchy of sets – a faculty of imagination which we
can use to (somewhat indirectly) represent complex infinite configurations of objects and
then classify these as genuinely logically possible ways things be that would make certain
axioms like PA2/PA♢ (or ZFC) true. However our use of accurate rather than inaccurate
methods of reasoning would raise access worries just as much as other ways of reasoning
about logical possibility. And the story involving abduction-like processes I’ve proposed
in this paper is intended to help answer that question.

43 Berry: (Probably) Not companions in guilt (see n. 1).
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There I respond to this worry by arguing that abduction and infer-
ence to the best explanation plausibly do give us some knowledge of
birds in distant locals, we just expect this knowledge to be relatively
sparse and less confident than knowledge of birds near by. So the above
argument only suggests that our beliefs about logical possibility should
get fewer and less confident as we consider larger and larger infinite
structures. But this is just what happens with our beliefs about logical
coherence and large collections: as one moves from finite collections to
countably infinite collections (like the natural numbers) to uncountable
collections (like the sets) our beliefs do get more sparse and less confi-
dent. For example, the continuum hypothesis44 (CH) is a fairly simple
statement involving sets of (relatively) small infinite size, yet it is known
that both the truth and the falsity of CH are compatible with ZFC.

Now however, I would like to make an additional defensive point.
As discussed in §ii, the amount of logical knowledge we need to ac-
count for will depend on the style of realism and optimism about math-
ematical knowledge one embraces. Personally, I’m inclined to think that
logical possibility facts are sufficiently uniform for the process of abduc-
tion/IBE, generalization and correction outlined above to account (via
the structuralist consensus) for our knowledge of the coherence all the
theorems of mainstream ZFC set theory) and (as we’ll see below) our
ability to recognize the logical coherence of non first order logical ax-
ioms categorically describing the natural numbers. But philosophers
more skeptical of the extent of our mathematical knowledge (and who
take more modest logical knowledge to be needed to account for it) are
even better situated. For, less ambitious and/or extensive knowledge of
logical possibility facts needs to be explained, in order to account for
the degree and kind of mathematical knowledge they take us to have.

vi. more ambitious mathematical axioms

Now let’s turn to the second major problem I hope to solve in this
paper: that of accounting for mathematicians’ ability to recognize good
non-first order logical conceptions of mathematical structures.

As noted above, many popular philosophies of mathematics agree
that we could solve mathematical access problems if we could account
for mathematicians’ ability to recognize the logical coherence of axioms
stating our conceptions of mathematical structures (and then truth pre-
servingly derive suitable kinds of logical consequences from these ax-
ioms). However (for reasons to be explained below) many philosophers

44 The continuum hypothesis states that there are no sets whose cardinality is interme-
diate between the cardinality of the real numbers and that of the natural numbers.
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think our conceptions of some paradigmatic mathematical structures
can’t be fully stated in the language of first order logic. This creates a
problem for the story above. For, at first glance, the basic explanatory
mechanism proposed in §iii can only explain knowledge of the logical
possibility or impossibility of claims in the language of first order logic
(e.g., ♢ϕ claims where ϕ is a sentence in the language of first order
logic). It appears that this mechanism can’t account for our ability to
recognize logical coherence of ‘rich’ (non-first order logical) concep-
tions of mathematical structures.

Philosophers who accept only a very weak form of mathematical re-
alism — on which only sentences derivable or refutable from some
first-order conception of a mathematical structure have a determinate
truth-value — may be satisfied with a story about the ability to recognize
the logical coherence of these conceptions of mathematical structures.

However, as noted above, many philosophers and mathematicians
think we must have some conception of certain pure mathematical
structures that goes beyond anything stateable in the language of first
order logic.

For one thing, many take us to have a conception of the natural num-
bers which uniquely pins down their structure, and thereby ensures the
truth or falsehood of all sentences in the language of number theory.
And it’s a theorem that no such conception of mathematical structures
can be formulated using the language of first-order logic alone (by a
single sentence or even an infinite collection of recursively enumerable
axioms).

Indeed, the problem gets worse. For Gödel’s theorem actually shows
that each FOL theory of the kind mentioned above fails to determine
an answer to some Con(T) sentence. These are sentences that only use
mathematical vocabulary, but intuitively say that no number codes a
proof of ‘0=1’ from premises in a certain algorithmically described first-
order logical theory T. Thus we’re disposed to accept (and treat as a
conceptually central truth, constraining acceptable interpretations of
‘number’) a biconditional of the following form:

• Con(T) iff 0=1 isn’t provable from the axioms of T.

Thus, if you accept that there are determinate facts about provability,
the attractiveness of the biconditional above creates pressure to accept
that there are also determinate truth values for all Con(T) sentences.
Yet it’s a theorem that no consistent finite (or recursively axiomatizable)
collection of first-order logical sentences (extending Peano Arithmetic)
candidate for our conception of the natural numbers can decide all such
Con sentences.
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For these and other reasons, many philosophers accept that our con-
ception of paradigmatic mathematical structures like the natural num-
bers cannot be expressed in the language of first order logic alone45.
It follows that to explain the degree of mathematical knowledge these
philosophers take us to have (via the structuralist consensus proposal
assumed in this paper), we must explain mathematicians’ ability to rec-
ognize the coherence of mathematical axioms stated using some more
powerful logical vocabulary than that of first order logic (e.g. axioms
using second order quantification).

Now if we could (somehow) presume some initial knowledge of some
basic statements Φ involving second-order quantification, then maybe
we could use the story about actual-to-possible inference and generaliza-
tion above to explain knowledge of claims about the logical coherence
of axioms expressing our conceptions of pure mathematical structures
(e.g., knowledge that ♢PA2, where PA2 denotes the second-order Peano
Axioms).

But there’s a problem. We want to explain our knowledge of the
coherence of PA2. But we can’t assume that the protagonists of our
toy model will have any knowledge of non-mathematical facts involving
second-order logical quantification, which could then be used as initial
data points for our process of abduction and inference to the best ex-
planation. For, while the widely accepted general purpose faculties (of
sensory observation, inference to the best explanation and FOL) we’re
taking for granted can clearly give us knowledge that certain first-order
states of affairs are actual (and hence logically possible, by the inference
from actual to possible mentioned above), it is less clear how we could
get knowledge of any claims involving second order quantification.

Insofar as we can’t see or touch or taste etc. the objects of second or-
der quantification (as opposed to the concrete objects which can figure
in first-order reasoning), these objects can seem to raise all the same
access worries as mathematical objects, and our knowledge of these ob-
jects cannot be presumed. For example, many would say knowledge of
facts like (∃X )(∀x)(X(x) iff x is a brown egg) requires the existence of a
second-order object. And knowledge of (abstract causally inert) second-
order objects can seem mysterious in exactly the same way knowledge
of sets would be. It’s not like we can just “see” second-order objects.

45 We could try replacing second order quantification with first order quantification
over sets and adopt some finite or r.e. collections first order axioms about these sets.
But we know (from the point about the incompleteness theorems above) that no such
expedient could express the categorical conception of a unique natural number structure
which many realists take us to have.



20 the journal of philosophy

We don’t see sets of eggs floating over an egg carton46. Thus (at least
some philosophers who accept the structuralist consensus will feel47),
we can’t just assume input knowledge of second-order logic without
risking begging the question48. But if we don’t presume knowledge of
some second-order facts as a starting point, then the abductive story
above cannot be used to account for knowledge that various second-
order states of affairs are logically possible.

I propose to address this problem by appealing to a notion of con-
ditional logical possibility, which has been independently motivated in
the literature on Potentialist set theory as a response to the Burali-Forti
paradox49.

The notion of conditional logical possibility naturally extends the
notion of logical possibility simpliciter, and we will see that it has the
following pair of useful features. On the one hand, it offers all the ex-
pressive power of second-order logic. But on the other hand, facts about
conditional logical possibility are sufficiently similar to (and, one might,
say continuous with) facts about logical possibility simpliciter that we
can generalize the story about knowledge of logical possibility above to
account for some knowledge of the logical possibility of axioms stated
using the conditional logical possibility operator5051.

46 Or at least, the suggestion that we do in Penelope Maddy: Realism in Mathematics,
1992 has proved deeply controversial.

47 I have in mind nominalists in the structuralist consensus, like Hellman in Geoffrey
Hellman: Structuralism Without Structures, in: Philosophia Mathematica 4.2 (1996),
pp. 100–123 and thereafter, who reject second order logic as objectionably ontologically
committal.

48 That is, a story which did this would intuitively fail to solve access worries leaving
a mystery about how this knowledge of second order objects could have arisen.

49 Doing this lets one simplify existing formulations and eliminate unnecessary and
potentially problematic de re modal claims (claims about what’s possible for a specific
object) in favor of claims about what’s possible given the structure of how some relations
apply and thereby avoids modal shyness worries of a kind noted by Linnebo in Øystein
Linnebo: Putnam on mathematics as modal logic, in: Geoffrey Hellman/Roy T. Cook
(eds.): Putnam on Mathematics and Logic, Berlin 2018.

50 The story about the acquisition of correct laws and good general methods of reason-
ing about logical possibility proposed below will also account for the ability to reliably
derive various further (logically necessary) consequences from such axioms, and thereby
gain further mathematical knowledge in something like the way mathematicians seem to
gain such knowledge.

51 Extant work like Sharon Berry: Modal Structuralism Simplified, in: Canadian Journal
of Philosophy 48.2 (2018), pp. 200–222; idem: A Logical Foundation for Potentialist Set
Theory (see n. 3) argues that reformulating Hellman’s potentialist set theory in terms
of a notion of ‘conditional logical possibility’ operator ♢ allows for some conceptual
simplification, and perhaps has certain other philosophical advantages. That work also
shows how using this notion lets us eliminate appeals to second order logic (or plural
quantification) in our characterization of other mathematical structures.
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VI.1. Conditional Logical Possibility. To quickly motivate and introduce
the notion of conditional logical possibility, suppose we have a map like
this:

I might say, ‘It’s logically impossible, given the facts about how ‘is
adjacent to’ and ‘is a country’ apply on the map above, that each coun-
try is either yellow, green or blue and no two adjacent countries are the
same color.’ Because if we consider all the possibilities consistent with
these relations applying as they actually do, each involves two adjacent
map regions having the same color.

As noted above, the notion of conditional possibility generalizes the
notion of logical possibility simpliciter. When evaluating claims about
traditional logical possibility operator ♢, we ignore all limits on the
size of the universe. We consider only the most general combinato-
rial constraints on how any relations could apply to any objects (c.f.
Frege52). And we ignore subject matter specific metaphysical constraints
so, e.g., ♢∃x(Raven(x)∧Vegetable(x)) comes out true. When evaluating
conditional logical possibility ♢R1...Rn we do almost exactly the same,
but we hold fixed (structurally speaking) how certain specific relations
R1 . . .Rn

5354.
Using the conditional logical possibility operator, we can formalize

the non-three colorability claim above as follows:
¬♢adjacent,country Each country is either yellow, green or blue and no

two adjacent countries are the same color.

An alternative approach to the problem at hand (following Hellman Hellman: Struc-
turalism Without Structures (see n. 47)), would be to employ plural quantification. Per-
haps something similar to my proposal could be articulated using plural quantification.
However, in this paper I will work with the conditional possibility operator because doing
so is (at least) expositorally helpful.

52 Frege (see n. 26).
53 Although I propose the logical possibility operator as a conceptual primitive, we

can (roughly) explain it in terms of Stuart Shapiro’s Shapiro (see n. 41) notion of systems
and structures and (unconditional) logical possibility as follows. ♢R1...Rnϕ holds iff some
logically possible scenario makes ϕ true while holding fixed what structure the system
formed by the objects related by R1 . . .Rn (considered under the relations R1 . . .Rn)
instantiates.

54 See appendix a for further clarification of what holding structural facts fixed means
by comparison with claims about set-theoretic models.
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We can also categorically describe the intended structure of the nat-
ural numbers using the conditional logical possibility operator. Recall
that we can categorically describe the natural numbers via the second-
order Peano Axioms (a combination of all the first order Peano Axioms
except for instances of the induction schema with the following second
order statement of induction.).

Induct2(∀X ) [(X (0) ∧ (∀n) (X (n) → X (n + 1))) → (∀n)(X (n))]

We can reformulate this claim using conditional logical possibility as
follows55.

• Induct♢: ‘□N,S If 0 is happy and the successor of every happy num-
ber is happy then every number is happy.

In other words: it is logically necessary, given how N and S apply,
that if 0 is happy and the successor of every happy number is happy
then every number is happy56.

Thus, we can write a sentence PA♢, (purely in terms of first order logic
plus the conditional logical possibility operator) which categorically de-
scribes the natural numbers.57 And58 argues that we can similarly rewrite
other second-order conceptions of pure mathematical structures.

Thus, plausibly (given the structuralist consensus), it suffices to an-
swer mathematical access worries to account for mathematicians’ abil-
ity to recognize that categorical descriptions of mathematical structures
like PA♢ are logically coherent. That is, we need to account for knowl-
edge of facts like ♢PA♢.

Above I argued that we can attractively explain knowledge of ♢ϕ
facts in cases where ϕ is first order, by appealing to initial observations
about which other first-order sentences are actually true, together with
knowledge that what’s actual is logically possible and inference to the
best explanation. I now argue we can use the same basic mechanisms to
account for knowledge of ♢ϕ facts like ♢PA♢, where the state of affairs ϕ

55 I write ‘0’ below for readability, but recall that one can contextually define away all
uses of 0 in a familiar Russellian fashion in terms of only relational vocabulary

56 Any otherwise-unused predicate in our language could be used in place of ‘is happy’
in this sentence (since the laws of logical possibility treat all n-place relations the same).

57 Just use the fact above to replace the second-order induction axiom in second-order
Peano Arithmetic with a version stated in terms of conditional logical possibility. Re-
call that the Second Order Peano Axioms are the familiar first-order Peano Axioms for
number theory, with the induction schema replaced by a single induction axiom using
second-order quantification.

58 Berry: Modal Structuralism Simplified (see n. 51).
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being recognized as logically possible or impossible is described using
the conditional logical possibility operator ♢....

First, note that if we could establish initial knowledge of a suitably
large class of conditional logical possibility claims as either true or
false, we could leverage the basic story about knowledge via inference
from actual to possible, IBE, abduction etc. proposed above to explain
knowledge of general good methods of reasoning about such condi-
tional logical possibility claims.

We can no longer rely on observation of concrete scenarios to gain
this initial knowledge. However, I propose that we can explain our
knowledge of the truth-values of a large class of subscripted ♢ claims
by applying a version of the story about generalization above!

First, note that what’s actual is automatically conditionally logically
possible fixing the facts about how any list of relations R1 . . .Rn apply.
So we have some initial knowledge of ♢R1...Rnϕ facts and ♢R1...Rn facts.

Second, inference to the best explanation can seemingly give us
knowledge of ¬♢R1...Rn facts. For example, the best explanation for the
fact that no one ever three colors some map might be that the map isn’t
three-colorable (i.e., it would be logically impossible to do so, given
the facts about which map regions are adjacent to one another59). As
proposed in §iii, I want to suggest that we can get clues that help dis-
tinguish regularities that hold with logical (as opposed to merely meta-
physical or physical) necessity by considering whether all substitution
instances of the regularity at issue are true60. Thus, we can get some ini-
tial knowledge of ¬♢R1...Rn facts (and thence, by inference from actual
to logically possible) the corresponding ♢¬♢R1...Rn facts61.

59 Note that a prediction which follows from this explanation (and not from alternative
theories like that three coloring is merely physically impossible) is that we shouldn’t
expect the map to be three textured or three scented either.

60 To clarify what I mean by talk of ‘substitution instances’ of conditional logical pos-
sibility claims here (and thence how we could get some initial knowledge of data points
about conditional logical possibility), suppose a physical map was never three colored. If
the explanation for this fact is that the relevant map is not three-colorable (i.e., it is logi-
cally necessary that it is not three-colored given the facts about how ‘is a map region’ and
‘is adjacent to’ apply) then many other things follow. For example, the map must never
have been three-scented or three-textured. And an analogous regularity should continue
to hold if we preserve structural facts while changing the nature of the properties and
relations involved (e.g., if we systematically replace all paper map regions with wooden
jigsaw pieces, or cut the map apart so that exactly the countries previously physically ad-
jacent to each other are now the ones tied together with pieces of string). These further
consequences of a logical necessity claim (which we would generally not expect to hold
for regularities which are merely physically or metaphysically necessary) give us some
help in deciding which actual world regularities are logically necessary.

61 Admittedly, we’re now typically much more confident in conditional logical possibil-
ity claims like the famous impossibility of a walk that crosses each Köningsburg bridge
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In this way, I propose, we can (in principle) gain knowledge of a
bunch of ♢ϕ statements where ϕ uses the conditional logical possibility
operator. So, finally, we can notice patterns in these conditional logical
possibility facts. We can use abduction and inference to the best ex-
planation to get general laws of what’s logically possible or necessary
involving conditional logical possibility claims, which imply the logical
possibility of states of affairs (described in terms of conditional pos-
sibility) that aren’t actual62. In this way, creatures like us (in all ways
that generate mathematical access worries) could have gotten correct
general methods of reasoning about logical possibility with sufficient
power to yield knowledge of some logical possibility claims like ♢PA♢.

vii. conclusion

Many philosophies of mathematics allow us to reduce access worries
about mathematics to access worries concerning our knowledge of log-
ical possibility, by saying that any logically coherent axioms pure math-
ematicians chose would express truths (for one reason or another). In
this paper, I have tried to solve the ‘residual access problem’ of how to
account for relevant knowledge of logical possibility.

To do this, I’ve developed and defended a toy model for how crea-
tures like us (in all ways that drive access worries) could have gotten
armchair reasoning methods able to deliver this knowledge of logical
possibility. On the basic picture being proposed, sensory and scientific
knowledge leads (via the fact that what’s actual is possible) to initial

exactly once, after reading a proof than we would be from mere abduction from trying
and failing to take such a walk. One might worry this greater degree of confidence (and
presumably also reliability) poses a problem for my proposal that abduction-like mech-
anisms could explain our acceptance of accurate methods for reasoning about logical
possibility we seem to have.

To address this worry, I want to distinguish between beliefs formed by abduction from
direct experience with a specific case and those formed by applying well-entrenched, ab-
ductively supported, general laws and methods (which seem to predict and explain a wide
variety of facts about different cases). For, I’m suggesting that a process of observation,
generalization, reflection, correction etc. could have given creatures like us powerful, cor-
rect general methods of reasoning about logical possibility, by which we can derive claims
about specific cases like the Köngingsburg bridges.

And there’s independent reason to think that such applications of well-entrenched
abductively-supported general principles/methods can often warrant more confidence
than abduction from direct experience with the specific situation at issue would. For
example, we’d often gain more confidence that a chemical reaction is impossible by a
deduction from well-entrenched (but ultimately abductively supported) general laws of
chemistry than by abduction from a history of trying and failing to produce that specific
reaction.

62 See Berry: A Logical Foundation for Potentialist Set Theory (see n. 3) for an example
of some candidate general laws of logical possibility and a proof that they have sufficient
power to reconstruct set theory.
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knowledge of logical possibility. Applying abduction and inference to
the best explanation from this data can then yield good general laws
of reasoning about logical possibility which allows us to recognize logi-
cally coherent mathematical axioms. In this way, logical possibility need
be no more deeply mysterious than knowledge of physical or chemical
possibility.

However, I’ve suggested that we can certain worries about this ba-
sic idea by making two small additions to the basic picture above: the
quasi-Quinian move in §V.2 and appeal to a notion of conditional log-
ical possibility which is independently motivated by the literature on
potentialist set theory.

appendix a. set theoretic mimicry

I will now describe how to use the familiar formal background of set
theory to mimic intended truth conditions for statements in a language
containing the logical possibility operator ♢ alongside usual first order
logical vocabulary (where distinct relation symbols R1 and R2 always
express distinct relations) as follows.

A formula ψ is true relative to a model M ( M |= ψ ) and an assignment
ρ which takes the free variables in ψ to elements in the domain of M63

just if:

• ψ = Rk
n(x1 . . . xk) and M |= Rk

n(ρ(x1), . . . , ρ(xk)).
• ψ = x = y and ρ(x) = ρ(y).
• ψ = ¬ϕ and ϕ is not true relative to M, ρ.
• ψ = ϕ ∧ ψ and both ϕ and ψ are true relative to M, ρ.
• ψ = ϕ ∨ ψ and either ϕ or ψ are true relative to M, ρ.
• ψ = ∃xϕ(x) and there is an assignment ρ′ which extends ρ by

assigning a value to an additional variable v not in ϕ and ϕ[x/v]
is true relative to M, ρ′64.

• ψ = ♢R1...Rnϕ and there is another model M′ which assigns the
same tuples to the extensions of R1 . . .Rn as M and M′ |= ϕ.65

Note that this means that ⊥ is not true relative to any model M and
assignment ρ.

If we ignore the possibility of sentences which demand something
coherent but fail to have set models because their truth would require
the existence of too many objects, we could then characterize logical
possibility as follows:

63 Here ‘an assignment’ means a partial function ρ from the collection of variables in
the language of logical possibility to objects in M, such that the domain of ρ is finite and
includes (at least) all free variables in ψ

64 As usual (?) ϕ[x/v] substitutes v for x everywhere where x occurs free in ϕ
65 As usual, I am taking □ to abbreviate ¬♢¬
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Set Theoretic Approximation: A sentence in the language of logical
possibility is true (on some interpretation of the quantifier and atomic re-
lation symbols of the language of logical possibility) iff it is true relative to
a set theoretic model whose domain and extensions for atomic relations
captures what objects there are and how these atomic relations actually ap-
ply (according to this interpretation) and the empty assignment function
ρ.
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